منابع مشابه
Bounds for the Co-PI index of a graph
In this paper, we present some inequalities for the Co-PI index involving the some topological indices, the number of vertices and edges, and the maximum degree. After that, we give a result for trees. In addition, we give some inequalities for the largest eigenvalue of the Co-PI matrix of G.
متن کاملBounds on the restrained Roman domination number of a graph
A {em Roman dominating function} on a graph $G$ is a function$f:V(G)rightarrow {0,1,2}$ satisfying the condition that everyvertex $u$ for which $f(u) = 0$ is adjacent to at least one vertex$v$ for which $f(v) =2$. {color{blue}A {em restrained Roman dominating}function} $f$ is a {color{blue} Roman dominating function if the vertices with label 0 inducea subgraph with no isolated vertex.} The wei...
متن کاملbounds for the co-pi index of a graph
in this paper, we present some inequalities for the co-pi index involving the some topological indices, the number of vertices and edges, and the maximum degree. after that, we give a result for trees. in addition, we give some inequalities for the largest eigenvalue of the co-pi matrix of g.
متن کاملBounds for the Hückel Energy of a Graph
Let G be a graph on n vertices with r := bn/2c and let λ1 ≥ · · · ≥ λn be adjacency eigenvalues of G. Then the Hückel energy of G, HE(G), is defined as HE(G) = ( 2 Pr i=1 λi, if n = 2r; 2 Pr i=1 λi + λr+1, if n = 2r + 1. The concept of Hückel energy was introduced by Coulson as it gives a good approximation for the π-electron energy of molecular graphs. We obtain two upper bounds and a lower bo...
متن کاملLaplacian Energy of a Fuzzy Graph
A concept related to the spectrum of a graph is that of energy. The energy E(G) of a graph G is equal to the sum of the absolute values of the eigenvalues of the adjacency matrix of G . The Laplacian energy of a graph G is equal to the sum of distances of the Laplacian eigenvalues of G and the average degree d(G) of G. In this paper we introduce the concept of Laplacian energy of fuzzy graphs. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IOP Conference Series: Materials Science and Engineering
سال: 2021
ISSN: 1757-899X
DOI: 10.1088/1757-899x/1070/1/012019